This work was supported by the Ministry of Science and Technology of the Russian Federation (Project No. 04.02.07.06).

References

 N. N. Mel'nikov, and N. I. Aronova, Agrokhimiya, 1987, 95.
 V. N. Gramenitskaya, G. I. Nikishin, and A. D. Petrov, Dokl. Akad. Nauk SSSR, 1958, 118, 497 [Dokl. Chem., 1958 (Engl. Transl.)].

- W. A. Pryor, N. Ohto, and D. F. Church, J. Am. Chem. Soc., 1983, 105, 3614.
- P. Clerc and S. Simon, Spectral Data for Structure Determination of Organic Compounds, Springer-Verlag, Berlin— Heidelberg—New York—Tokyo, 1983, 120.
- B. D. Kruzhalov and B. I. Golovanenko, Sovmestnoe poluchenie fenola i atsetona [Simultaneous Preparation of Phenol and Acetone], Goskhimizdat, Moscow, 1963, p. 68 (in Russian).

Received February 13, 1998

Unusual nucleophilic substitution in the nitrophthalimide series

E. V. Kudrik, * M. A. Zharnikova, E. A. Deryabkina, and G. P. Shaposhnikov

Ivanovo State Academy of Chemistry and Technology,
7 prosp. Engelsa, 153460 Ivanovo.
Tel.: +7 (093 2) 30 3339. Fax: +7 (093 2) 41 7995. E-mail: isl@icti.ivanovo.su

The reactions of 3- and 4-nitrophthalimides with hydroxylamine in aqueous alcohol media were studied. A mixture of 3-amino-4-nitro- and 4-amino-5-nitrophthalimides is formed in the case of 4-nitrosubstituted derivative, whereas 3,6-dihydroxyphthalimide is unexpectedly found to be the main product of the reaction of 4-nitrosubstituted derivative. A possible mechanism of the transformation was suggested.

Key words: phthalimide, hydroxylamine, nucleophilic substitution, 3,6-dihydroxy-phthalimide.

Many works, summarized in the monograph, are devoted to the chemistry of hydroxylamine. These studies showed that hydroxylamine is a convenient aminating reagent, which allows amino groups to be inserted in electron-deficient heterocycles, for example, in nitrosubstituted derivatives of quinoline. Aromatic compounds activated by electron-withdrawing substituents also react sufficiently readily, for example, m-dinitrobenzene affords 2.4-dinitroaniline in high yield.

Substituted phthalimides are the starting compounds in the synthesis of the corresponding phthalonitriles,³ phthalocyanines, and tetrabenzoporphines, which are of unambiguous practical interest as mesomorphic⁴ and nonlinear-optic⁵ materials, dyes and pigments, whose properties are mainly dependent on the number and nature of substituents in the macrocycle periphery.⁴

In order to obtain isomeric nitroaminophthalimides, we studied the reactions of hydroxylamine with 4- and 3-nitrophthalimide (1 and 2) in aqueous-alcohol media in the presence of KOH.

In the presence of 4-nitrophthalimide, as should be expected, we obtained a mixture of 3-amino-4-nitro-

and 5-amino-4-nitrophthalimides with a ~60: 40 isomer ratio (according to the ¹H NMR spectroscopic data). The presence of the nitro and amino groups in the

Translated from Izvestiya Akademii Nauk. Seriya Khimicheskaya, No. 6, pp. 1250-1252, June, 1998.

compounds obtained is confirmed by the data of elemental analysis and IR and 1H NMR spectroscopy. The compounds obtained are capable of diazotization by nitrosylsulfuric acid and of coupling with β -naphthol to give a red pigment.

However, the compound formed from 3-nitrophthalimide under the same conditions did not give the qualitative reaction of the primary amino group and was identified, according to the data of elemental analysis and mass, ¹H, and IR spectroscopies, as 3,6-dihydroxyphthalimide (3). After single recrystallization from water, imide 3, according to the ¹H NMR spectroscopic data, contained almost no noticeable amounts of admixtures. The IR spectrum of 3 exhibited bands assigned to stretching vibrations of C-H, O-H, N-H, C=O, and C-O bonds, and the band corresponding to stretching vibrations of O-H bonds was substantially broadened and shifted to the low-frequency region, which indicates that hydrogen atoms of hydroxyl groups participate in the formation of the intramolecular hydrogen bond.⁶

It is sufficiently difficult to explain the formation of compound 3 on the basis of traditional concepts on the mechanism of nucleophilic addition reactions. The published data⁷ show that hydroxylamine and its derivatives can react as O-nucleophiles rather than N-nucleophiles. In particular, the reaction of N-methylhydroxylamine with ethyl ester of cinnamic acid in the presence of bases was studied.⁸ It is shown that in this case, the MeNHO⁻ anion is the reacting particle, which reacts with the substrate (Michael addition) only at the oxygen atom of hydroxylamine.

The formation of 3 cannot occur as the successive introduction of two OH groups, because the electron donor that has already reacted deactivates substantially the para-position thus preventing the second act of the transformation. We believe that the formation of 3 can occur through intermediate 4 of the quinoid type according to the following scheme:

The scheme suggested explains satisfactorily the observed experimental facts. For example, it is established that the mixture gains a red color during the reaction and decolorizes only after some time. This can be due to the formation of a sufficiently stable intermediate of the quinoid type. No admixture of the 3,4-isomer was found in the reaction mass, which can be explained by the high stability of the intermediate 5 compared to an isomeric complex, which could be formed during the nucleophilic attack at position 4. In the case of 4-nitrophthalimide, the formation of intermediate similar to 4 is impossible, and the reaction occurs via the traditional mechanism of nucleophilic substitution.9

Experimental

Mass spectra were recorded on an LKB 9000S instrument. ¹H NMR spectra were recorded on a Tesla 587 FT instrument with a working frequency of 80 MHz, and IR spectra were recorded on a Bio-Rad FTS instrument.

3,6-Dihydroxyphthalimide (3). 3-Nitrophthalimide (5 g) obtained from 3-nitrophthalic acid (chemically pure grade) according to the known procedure 10 and pre-powdered hydroxylamine sulfate (11 g) were successively added to propan-2-ol (90 mL). The mixture was thoroughly stirred, and KOH (6 g) in water (5 mL) was added as one portion. The reaction mass gained a red color, and its temperature increased spontaneously to 40 °C. The solution obtained was stirred for 30 min. Then the precipitate formed was filtered off, twice recrystallized from water, and dried at 80 °C to obtain 3 as crystal hydrate (1.4 g) in the form of yellowish needles with m.p. 225-227 °C. After drying in vacuo (0.1 Pa) at 120 °C, we obtained 3 (1.12 g, 24%) as a yellowish powder with m.p. 270-273 °C. Found (%): N, 8.05. C₈H₅NO₄. Calculated (%): N, 7.82. IR (KBr), v/cm⁻¹: 3403 (N-H); 3147 (O-H); 2928 (C-H); 1713 (C=O); 1465 (C=C); 1187 (C-N); 1136 (C-C); 1014 (C-O). 1H NMR (DMSO-d₆), 8: 10.02 (s, 1 H, N-H); 7.84 (s, 2 H, C-H_{arom}). MS (EI, 70 eV, 130 °C), m/z (I_{rel} (%)): 179 [M]⁺ (4.3), 178 [M-1]⁺ ., (%)): 179 [M]⁺ (4.3), 178 [M-1]⁺ (25.8), 163 (100), 146 [M-33]⁺ (40), 132 [M-47]⁺ (68.8), 119 IM-1614 $[M-60]^+$ (10.7), 104 $[M-75]^+$ (100), 89 $[M-90]^+$ (12.9), 76 [M-103]+ (36.6), 75 [M-104]+ (81.7).

Amination of 4-nitrophthalimide. 4-Nitronaphthalimide (5 g) and pre-powdered hydroxylamine sulfate (11 g) were placed in propan-2-ol (90 mL). The mixture was thoroughly stirred, and KOH (6 g) in water (5 mL) was added as one portion. The reaction mass gained a red color, and its temperature increased spontaneously to 30 °C. The solution obtained was stirred for 30 min. The precipitate formed was filtered off, washed with water and propan-2-ol, and dried at 120 °C. A mixture (3.9 g, 72.4%) of 3-amino-4-nitro- and 5-amino-4-nitrophthalimides in the form of yellowish powder with m.p. 260—263 °C was obtained. Found (%): N, 18.70. C₈H₅N₃O₂. Calculated (%): N, 20.30. IR (KBr), v/cm⁻¹: 3432 (N-H); 1784 (C=O); 1752 (C=O); 1568 (N=O); 1344 (N=O). ¹H NMR (DMSO-d₆), 8: 10.1 (s, 1 H, N-H); 8.0—6.0 (m, 2 H, C-H_{arom}); 3.8—4.4 (br.s, 2 H, NH₂).

References

1.1. A. Poplavskaya and R. G. Kurmangalieva, Khimiya amidoksimov [Chemistry of Amidoximes], Nauka KazSSR, Alma-Ata, 1988, 410 pp. (in Russian).

- 2. Weygand-Hilgetag, Organisch-chemische Experimentkunst Johann Ambrosius Barth, Leipzig, 1964.
- O. V. Shishkina, V. E. Maizlish, G. P. Shaposhnikov, A. V. Lyubimtsev, R. P. Smirnov, and A. Baran'ski, Zh. Obshch. Khim., 1997, 67, 842 [J. Gen. Chem., 1997, 67 (Engl. Transl.)].
- J. P. Bourgoin, F. Doublet, S. Palasin, and M. Vanevyver, Langmuir, 1996, 12, 6473.
- H. S. Nalva, M. K. Engel, M. Hanach, and H. Schultz, Appl. Organometallic Chem., 1996, 10, 661.
- R. S. Drago, Physical Methods in Chemistry, W. B. Saunders Co., Philadelphia etc., 1977.
- Comprehensive Organic Chemistry, Eds. D. R. H. Barton and W. D. Ollis, v. 2, Nitrogen Compounds, Ed. I. O. Sutherland, Pergamon Press, 1979.
- T. G. Bask and D. H. R. Barton, J. Chem. Soc., Perkin Trans., 1977, 924.
- S. Efros and M. V. Gorelik, Khimiya i tekhnologiya promezhutochnykh produktov [Chemistry and Technology of Intermediates], Khimiya, Leningrad, 1980, p. 260 (in Russian).
- 10. R. Kahn, Ber., 1902, 35, 3867.

Received November 12, 1997; in revised form February 10, 1998

Synthesis of $9-C_6H_5-3-(\pi-C_5H_5)-3,1,2-C_0C_2B_9H_{10}$ by cross-coupling reaction of $9-I-3-(\pi-C_5H_5)-3,1,2-C_0C_2B_9H_{10}$ with C_6H_5ZnCl catalyzed by palladium complexes

L. I. Zakharkin, G. G. Zhigareva, * and E. V. Balagurova

A. N. Nesmeyanov Institute of Organoelement Compounds, Russian Academy of Sciences, 28 ul. Vavilova, 117813 Moscow, Russian Federation.

Fax: +7 (095) 135 5085

The cross-coupling reaction of 9-I-3- $(\pi-C_5H_5)$ -3,1,2-CoC₂B₉H₁₀ with organozine compounds catalyzed by palladium complexes was used to synthesize the first representative of *B*-phenyl-substituted carboranes, 9-C₆H₅-3- $(\pi-C_5H_5)$ -3,1,2-CoC₂B₉H₁₀.

Key word: π-cyclopentadienyl-3,1,2-dicarbollylcobalt, catalysis, cross-coupling.

No B-phenyl derivatives of π -cyclopentadienyl-3,1,2-dicarbollylcobalt have been prepared to date.1 Recently,² the salt $[MePPh_3]^+[\pi-C_2B_9H_8(CH_3)_3]_2Co^$ was synthesized by cross-coupling reaction of $[MePPh_3]^+[\pi-C_2B_9H_8I_3]_2Co^-$ with CH_3I catalyzed by palladium complexes2 using the reaction we found in 1982,3 i.e., replacement of iodine atom with an organic group in B-iodocarboranes under the action of organomagnesium compounds in the presence of metallocomplex catalysts. This reaction cannot be used in the case of B-iodo-substituted derivatives of $3-(\pi-C_5H_5)$ -3,1,2-CoC₂B₉H₁₀I since organomagnesium compounds π -C₅H₅-group of 3- $(\pi$ -C₅H₅)react with the 3,1,2-CoC₂B₉H₁₁ to replace a hydrogen atom with the organic group.4

In this connection, we studied the cross-coupling reaction of 9-1-3- $(\pi$ -C₅H₅)-3,1,2-CoC₂B₉H₁₀ (1) with

organozinc compounds in the presence of $(Ph_3P)_4Pd$ taking C_6H_5ZnCl as an example. We found that this reaction occurs with the replacement of the iodine atom with the phenyl group and with the formation of $9-C_6H_5-3-(\pi-C_5H_5)-3,1,2-CoC_2B_9H_{10}$ (2) in a high yield analogously to reactions with other B-iodocarboranes. In this case, the $\pi-C_5H_5$ group does not enter into the substitution reaction under the action of C_6H_5ZnCl . The reaction occurs by the following scheme:

Scheme 1

9-I-3-
$$(\pi$$
-C₅H₅)-3,1,2-CoC₂B₉H₁₀ + C₆H₅ZnCl $\xrightarrow{(Ph_3P)_4Pd^0}$

1

9-C₆H₅-3- $(\pi$ -C₅H₅)-3,1,2-CoC₂B₉H₁₀